the pressure dependence of T_c requires knowledge of the pressure dependencies of T_F , $N(\varepsilon_F)$, and I. In the following discussion we shall make some assumptions as to the nature of I and $N(\varepsilon_F)$.

Let us assume that the FM behavior can be described by the Hubbard model¹⁶ for a single, nondegenerate, d-band orbital, such as discussed by Evenson <u>et al</u>.,¹⁷ where the bare intra-atomic exchange constant is replaced by an effective intraatomic exchange which takes into account the individual electron correlations. In general we assume that I is a compositionally averaged constant in the case of the FM behavior of alloys. For the $MnAs_{x}Sb_{1-x}$ solid solutions considered in this paper, I is the effective exchange appropriate for the Mn atoms. Using double time Green's function techniques and decoupling in first order, the exchange splitting is the assumed $nI\zeta$.¹⁸ We assume that I can be found by means of a perturbation treatment such as used by Lang and Ehrenreich¹⁵ or by Kanamori,¹⁹ and we write I as given approximately by^{12,13,15,19}

$$I = I_{b} (l + \gamma I_{b} / W)^{-l} , \qquad (6)$$

where $I_{\rm b}$ is the bare interaction, W is the bandwidth and γ is a constant. In addition we assume that the number of magnetic electrons n remains constant,²⁰ consequently $N(\varepsilon_{\rm F})$ can be written as^{12,13}

$$N(\varepsilon_{\rm F}) = \beta/W \qquad , \tag{7}$$

where β is another constant and is related to γ . It is implied that W and thus $N(\epsilon_F)$ scale uniformly (uniform scaling assumption) under volume changes. Finally, we assume the volume dependence of W is given by Heine's²¹ results

$$\partial \ln W / \partial \ln V = -5/3$$
 (8)

-7-

Using the above results, Eqs. (6)-(8), the volume dependence of \overline{I} , Eq. (4),

is

$$\frac{\partial \ln \overline{I}}{\partial \ln V} = \begin{bmatrix} \frac{5}{3} + \frac{\partial \ln I_b}{\partial \ln V} \end{bmatrix} \frac{I}{I_b} , \qquad (9)$$

which is independent of β and γ and where here I_b is assumed volume dependent. For the density of states of the form given by Eq. (7), it can be shown that $T_F \sim W$, and hence from Eq. (8), $\partial \ln T_F / \partial \ln V = -5/3$. Using Eqs. (3), (4), (8) and (9) the volume dependence of T_c becomes

 $\partial \ln T_c / \partial \ln V \equiv \Gamma$

$$= -\frac{5}{3} + \frac{1}{2} \left[\frac{5}{3} + \partial \ln I_{b} / \partial \ln V \right] [\overline{I} - 1]^{-1} (I/I_{b}) , \quad (10)$$

or equivalently using Eq. (3)

$$= -\frac{5}{3} + \frac{1}{2} \left[\frac{5}{3} + \partial \ln I_{b} / \partial \ln V \right] (I/\overline{I}_{b}) (T_{F}^{2}/T_{c}^{2}) .$$
 (11)

In terms of pressure, Eq. (11) can be written as

$$\partial T_{c} / \partial P = \frac{5}{3} \varkappa T_{c} + \frac{1}{2} \varkappa \left[\frac{5}{3} + \partial \ln I_{b} / \partial \ln V \right] (I/\overline{I} I_{b}) (T_{F}^{2}/T_{c}) , \qquad (12)$$

where \varkappa is the volume compressibility.

We shall now show how pressure measurements of T_c can be used to determine a maximum value for \overline{I} and a minimum value for T_F . We can rewrite Eq. (10) as

$$\overline{\mathbf{I}} - \mathbf{l} = \frac{1}{2} \left[\frac{5}{3} + \partial \ln \mathbf{I}_{b} / \partial \ln \mathbf{V} \right] (\mathbf{I} / \mathbf{I}_{b}) \left[\Gamma + \frac{5}{3} \right]^{-1} \qquad (13)$$