the pressure dependence of T_{c} requires knowledge of the pressure dependencies of $T_{F}, N\left(\epsilon_{F}\right)$, and I. In the following discussion we shall make some assumptions as to the nature of I and $N\left(\epsilon_{F}\right)$.

Let us assume that the FM behavior can be described by the Hubbard model ${ }^{16}$ for a single, nondegenerate, d-band orbital, such as discussed by Evenson et al., ${ }^{17}$ where the bare intra-atomic exchange constant is replaced by an effective intraatomic exchange which takes into account the individual electron correlations. In general we assume that I is a compositionally averaged constant in the case of the FM behavior of alloys. For the $\mathrm{MnAs}_{x} \mathrm{Sb}_{1-x}$ solid solutions considered in this paper, I is the effective exchange appropriate for the Mn atoms. Using double time Green's function techniques and decoupling in first order, the exchange splitting is the assumed nIک. ${ }^{18}$ We assume that I can be found by means of a perturbation treatment such as used by Lang and Ehrenreich ${ }^{15}$ or by Kanamori, ${ }^{19}$ and we write I as given approximately by ${ }^{12,13,15,19}$

$$
\begin{equation*}
I=I_{b}\left(I+\gamma I_{b} / W\right)^{-1} \tag{6}
\end{equation*}
$$

where I_{b} is the bare interaction, W is the bandwidth and γ is a constant. In addition we assume that the number of magnetic electrons n remains constant, 20 consequently $\mathbb{N}\left(\epsilon_{F}\right)$ can be written as ${ }^{12,13}$

$$
\begin{equation*}
N\left(\epsilon_{F}\right)=\beta / W, \tag{7}
\end{equation*}
$$

where β is another constant and is related to γ. It is implied that W and thus $\mathbb{N}\left(\epsilon_{F}\right)$ scale uniformly (uniform scaling assumption) under volume changes. Finally, we assume the volume dependence of W is given by Heine's ${ }^{21}$ results

$$
\begin{equation*}
\partial \ln W / \partial \ln V=-5 / 3 \tag{8}
\end{equation*}
$$

Using the above results, Eqs. (6)-(8), the volume dependence of $\overline{\mathrm{I}}$, Eq. (4), is

$$
\begin{equation*}
\frac{\partial \ln \bar{I}}{\partial \ln V}=\left[\frac{5}{3}+\frac{\partial \ln I_{b}}{\partial \ln V}\right] \quad \frac{I}{I_{b}} \tag{9}
\end{equation*}
$$

which is independent of β and γ and where here I_{b} is assumed volume dependent. For the density of states of the form given by Eq. (7), it can be shown that $T_{F} \sim W$, and hence from Eq. (8), $\partial \ln T_{F} / \partial \ln V=-5 / 3$. Using Eqs. (3), (4), (8) and (9) the volume dependence of T_{c} becomes

$$
\begin{align*}
\partial \ln T_{c} / \partial \ln V & \equiv \Gamma \\
& =-\frac{5}{3}+\frac{1}{2}\left[\left.\frac{5}{3}+\partial \ln I_{b} / \partial \ln V \right\rvert\,[\bar{I}-1]^{-1}\left(I / I_{b}\right),\right. \tag{10}
\end{align*}
$$

or equivalently using Eq. (3)

$$
\begin{equation*}
\Gamma=-\frac{5}{3}+\frac{1}{2}\left[\frac{5}{3}+\partial \ln I_{b} / \partial \ln V\right]\left(I / \bar{I} I_{b}\right)\left(T_{F}{ }^{2} / T_{c}{ }^{2}\right) \tag{11}
\end{equation*}
$$

In terms of pressure, Eq. (1l) can be written as

$$
\begin{equation*}
\partial T_{c} / \partial P=\frac{5}{3} x T_{c}+\frac{1}{2} x\left[\frac{5}{3}+\partial \ln I_{b} / \partial \ln V\right]\left(I / \bar{I} I_{b}\right)\left(T_{F}^{2} / T_{c}\right), \tag{12}
\end{equation*}
$$

where x is the volume compressibility.
We shall now show how pressure measurements of T_{c} can be used to determine a maximum value for \bar{I} and a minimum value for T_{F}. We can rewrite Eq. (10) as

$$
\begin{equation*}
\bar{I}-1=\frac{I}{2}\left[\frac{5}{3}+\partial \ln I_{b} / \partial \ln V\right]\left(I / I_{b}\right)\left[\Gamma+\frac{5}{3}\right]^{-1} \tag{13}
\end{equation*}
$$

